Трифонов Е.В.
Антропология:   дух - душа - тело - среда человека,

или  Пневмапсихосоматология человека

Русско-англо-русская энциклопедия, 18-е изд., 2015

π

ψ

σ

Общий предметный алфавитный указатель

Психология Соматология Математика Физика Химия Наука            Общая   лексика
А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


ДОВЕРИТЕЛЬНЫЙ ИНТЕРВАЛ
confidence interval ]

     Доверительным называют интервал (W ' - d ), (W ' + d ),  который покрывает неизвестный параметр  W  с заданной надежностью  γ
     Интервал ( W ' - d ), (W ' + d )  имеет случайные концы.  Их называют доверительными границами.  Действительно, в разных выборках будут получаться различные значения W '. Следовательно, от выборки к выборке будут изменяться, и концы доверительного интервала, то есть доверительные границы сами являются случайными величинами - функциями от  x 1, x 2 ,..., x n.  Поскольку случайной величиной является не оцениваемый параметр W, а доверительный интервал, то более правильно говорить не о вероятности попадания W  в доверительный интервал, а о вероятности того, что доверительный интервал покроет значение параметра W.
     Метод доверительных интервалов разработан в 1935 г. американским статистиком Дж. Нейманом (Neyman Jerzy, 1894 -1981) на основе идей английского статистика Р. Фишера (Fisher, Ronald Aylmer, 1890-1962, британский математик).
     Вычисления доверительных интервалов могут быть легко сделаны с помощью статистических программ для персональной ЭВМ. Из многочисленных статистических программ можно рекомендовать хорошо известные программы:
     - Statistica (URL: http://www.statsoftinc.com/textbook/stathome.html) или
     - SPSS (URL: http://www.spssscience.com/spss11).

Google

В отдельном окне: 

     
«Я    У Ч Е Н Ы Й    И Л И . . .    Н Е Д О У Ч К А ?»
    Т Е С Т    В А Ш Е Г О    И Н Т Е Л Л Е К Т А

Предпосылка:
Эффективность развития любой отрасли знаний определяется степенью соответствия методологии познания - познаваемой сущности.
Реальность:
Живые структуры от биохимического и субклеточного уровня, до целого организма являются вероятностными структурами. Функции вероятностных структур являются вероятностными функциями.
Необходимое условие:
Эффективное исследование вероятностных структур и функций должно основываться на вероятностной методологии (Трифонов Е.В., 1978,..., ..., 2015, …).
Критерий: Степень развития морфологии, физиологии, психологии человека и медицины, объём индивидуальных и социальных знаний в этих областях определяется степенью использования вероятностной методологии.
Актуальные знания: В соответствии с предпосылкой, реальностью, необходимым условием и критерием... ...
о ц е н и т е   с а м о с т о я т е л ь н о:
—  с т е п е н ь  р а з в и т и я   с о в р е м е н н о й   н а у к и,
—  о б ъ е м   В а ш и х   з н а н и й   и
—  В а ш   и н т е л л е к т !


Любые реальности, как физические, так и психические, являются по своей сущности вероятностными.  Формулирование этого фундаментального положения – одно из главных достижений науки 20-го века.  Инструментом эффективного познания вероятностных сущностей и явлений служит вероятностная методология (Трифонов Е.В., 1978,..., ..., 2014, …).  Использование вероятностной методологии позволило открыть и сформулировать важнейший для психофизиологии принцип: генеральной стратегией управления всеми психофизическими структурами и функциями является прогнозирование (Трифонов Е.В., 1978,..., ..., 2012, …).  Непризнание этих фактов по незнанию – заблуждение и признак научной некомпетентности.  Сознательное отвержение или замалчивание этих фактов – признак недобросовестности и откровенная ложь.


     ♥  Ошибка?  Щелкни здесь и исправь ее!                                 Поиск на сайте                              E-mail автора (author): tryphonov@yandex.ru

π

ψ

σ

Санкт-Петербург, Россия, 1996-2015

Copyright © 1996-, Трифонов Е.В.

Разрешается некоммерческое цитирование материалов данной энциклопедии при условии
полного указания источника заимствования: имени автора, названия и WEB-адреcа данной энциклопедии


 
Всего посетителей = Altogether Visitors :  
Посетителей раздела «Математика» = Visitors of section «Mathematics» :