АДЕНОГИПОФИЗ: МАКРОСТРУКТУРА [ macrostructure of adenohypophysis ] (Греч.: άδήν-железа + ίπό - приставка, в сложных словах: под; ниже; + φύσις - творение, 1825).
(Греч.: μακρός - большой; + лат.: structura - строение, расположение, порядок; 15 в).
Гипофиз - это орган эндокринной системы, один из главных эффекторных органов в иерархии нейрогуморальных регуляторов систем организма. Гипофиз состоит из трёх частей: передняя доля гипофиза, или аденогипофиз, задняя доля гипофиза, или нейрогипофиз и промежуточная (рудиментарная) доля гипофиза.
Макроструктура гипофиза, или макроскопическое строение гипофиза - это анатомия гипофиза, структура гипофиза, видимая невооруженным взглядом.
ЭНДОКРИНОЛОГИЯ: ОГЛАВЛЕНИЕ = ENDOCRINOLOGY: CONTENTS
1. ОБЩАЯ ЭНДОКРИНОЛОГИЯ = GENERAL ENDOCRINOLOGY.
2. ЧАСТНАЯ ЭНДОКРИНОЛОГИЯ. НОРМА = SPECIAL ENDOCRINOLOGY. NORM.
2.1. Гипоталамус = The hypothalamus.
2.2. Гипофиз = The pituitary gland.
2.2.1. Макроструктура аденогипофиза = Macrostructure of adenohypophysis.
2.2.2. Микроструктура аденогипофиза = Microstructure of adenohypophysis.
2.2.3. Биоактивные вещества аденогипофиза = Bioactive substances of adenohypophysis.
2.2.4. Действие биоактивных веществ аденогипофиза = Actions of bioactive substances of adenohypophysis.
2.2.5. Макроструктура нейрогипофиза = Macrostructure of neurohypophysis.
2.2.6. Микроструктура нейрогипофиза = Microstructure of neurohypophysis.
2.2.7. Биоактивные вещества нейрогипофиза = Bioactive substances of neurohypophysis.
2.2.8. Действие биоактивных веществ нейрогипофиза = Actions of bioactive substances of neurohypophysis.
2.3. Щитовидная железа = The thyroid.
2.4. Околощитовидная железа = The parathyroid gland.
2.5. Hадпочечник = The adrenal cortex.
2.6. Островковый аппарат поджелудочной железы = Islet apparatus of the pancreas.
2.7. Половые железы = Gonads.
3. ЧАСТНАЯ ЭНДОКРИНОЛОГИЯ. ПАТОЛОГИЯ = SPECIAL ENDOCRINOLOGY. PATHOLOGY.
МАКРОСТРУКТУРА ГИПОФИЗА.
Гипофиз расположен в гипофизарной ямке турецкого седла клиновидной кости черепа. Железа отделена от полости черепа отростком твёрдой оболочки головного мозга, образующим диафрагму седла. Через отверстие в этой диафрагме гипофиз посредством ножки соединен с вышележащими отделами головного мозга: с воронкой гипоталамуса, с медианным возвышением гипоталамуса промежуточного мозга. Поперечный размер гипофиза ~10 ÷ 17 мм, переднезадний - ~5 ÷ 15 ÷ мм, вертикальный ~5 ÷ 10 мм. Масса гипофиза (~400 ÷ 900 г). У мужчин среднее значение массы гипофиза составляет ~0,5 г, у женщин - ~0,6 г. Поперечное среднее значение диаметра гипофиза составляет ~13 мм. Вертикальный размер - ~6 ÷ 9 мм. Переднезадний размер - ~9 мм. Эти размеры могут изменяться у женщин во время менструального цикла и различаться у неоднократно рожавших женщин. Во время беременности эти размеры могут увеличиваться во всех направлениях. Соответственно увеличивается масса гипофиза до ~1 г.
Снаружи гипофиз покрыт капсулой. Передняя доля гипофиза, или аденогипофиз более плотная, чем задняя доля, нейрогипофиз. В передней доле выделяют три части. Дистальная (передняя) часть аденогипофиза занимает переднюю область гипофизарной ямки турецкого седла черепа. Промежуточная часть аденогипофиза расположена на границе с задней долей гипофиза. Бугорная (туберальная) часть аденогипофиза расположена выше и соединяется с воронкой и медианным возвышением гипоталамуса. В связи с особенностями кровоснабжения частей гипофиза, передняя доля имеет бледно-желтый цвет, с красноватым оттенком. Паренхима передней доли гипофиза представлена несколькими типами железистых клеток, расположенных скоплениями (трабекулами или фолликулами) разделёнными перегородками из рыхлой соединительной ткани. В толще перегородок располагаются синусоидальные кровеносные капилляры. Задняя доля гипофиза (неирогипофиз) состоит из нейрональной части и воронки. Нейрональная часть находится в задней области гипофизарной ямки, располагающейся позади бугорной части аденогипофиза. Нейрогипофиз содержит нейроглиальные клетки (питуициты), нервные волокна, идущие в нейрогипофиз от нейросекреторных ядер гипоталамуса, и нейросекреторные тельца.
Наиболее вероятная структура гемациркуляторного русла гипоталамуса и гипофиза.
Артерии гипофиза исходят от каждой внутренней сонной артерии по одиночной нижней гипофизарной артерии и по нескольким верхним гипофизарным артериям. Нижняя гипофизарная артерия разделяется на медиальную и латеральную ветви. В нейрогипофизе эти артериальные ветви образуют два типа гемакапиллярных сетей. В первом типе гемакапиллярных сетей приносящими и выносящими сосудами являются артериолы. Такой тип сетей называется артериально-артериальным микрогемациркуляторным руслом. Во втором типе гемакапиллярных сетей нейрогипофиза приносящим сосудом является артериола, а выносящим сосудом является венула. Такой тип сетей называется артериально-венозным микрогемациркуляторным руслом. По венулам артериально-венозного микрогемациркуляторного русла кровь оттекает по трём направлениям. Первое направление потока крови - в нижние гипофизарные вены, а далее в синусы твёрдой оболочки головного мозга. Второе направление потока крови - в длинные и короткие вены и венулы аденогипофиза. Венулы аденогипофиза дают начало его венозноно-венозному микрогемациркуляторному руслу. Выносящими сосудами этой гемакапиллярной сети являются нижние гипофизарные вены аденогипофиза. Третье направление потока венозной крови - от гемакапиллярной сети нижней части воронки (артериально-венозное гемациркуляторное русло). Приносящими сосудами этой сети являются верхние гипофизарные артерии. Кроме того, верхние гипофизарные артерии являются приносящими сосудами, проходящими по оси воронки серого бугра, образующими анастомозы с выносящими нижними гипофизарными артериями. Эти анастомозы образуют гемакапиллярную сеть (артериально-артериальное гемациркуляторное русло) воронки. Верхние гипофизарные артерии снабжают кровью срединное возвышение и образуют в верхней части воронки гемакапиллярную сеть (артериально-венозное гемациркуляторное русло). Артерии срединного возвышения и стока воронки завершаются характерной сетью капилляров, которая наиболее сложна в верхней части воронки. В срединном возвышении капилляры образуют наружное, «покровное» сплетение капилляров и внутреннее, «глубокое» сплетение капилляров. В гемакапилляры наружного сплетения кровь поступает от верхних гипофизарных артерий, а оттекает по длинным прямым венам. Прямые вены нисходят в переднюю долю гипофиза (аденогипофиз). Внутреннее гемакапиллярное сплетение образовано параллельными цепями наружного гемакапиллярного сплетения. От капилляров нижней части воронки, от её стока кровь оттекает по коротким прямым венам в переднюю долю гипофиза. Как длинные, так и короткие прямые вены впадают в венозные синусоиды, расположенные в тяжах, разделяющих островки секреторных клеток аденогипофиза. Аденогипофиз не снабжается непосредственно артериями. Поскольку как приносящие гемасосуды, так и выносящие гемасосуды аденогипофиза являются однотипными, в частности венами, гемациркуляторное русло аденогипофиза по определению является воротным (портальным) гемациркуляторным руслом, а кровообращение по этим сосудам - воротной (портальной) системой гемациркуляции. Воротная система гемациркуляции предназначена для транспорта либеринов и статинов гипоталамуса. Эти гормоны синтезируются и выводятся мелкими (парвоцеллюлярными) нейросекреторными клетками, сгруппироваными в гипоталамусе. Гипоталамические либерины и статины управляют секреторными циклами аденогипофиза. Промежуточная часть гипофиза не имеет чётко организованного кровоснабжения. Существует три возможных пути венозного кровотока в гипофизе. Первый путь: приток по длинным и коротким прямым (портальным, воротным) венам. Второй путь: отток по крупным нижним гипофизарным венам в венозные синусы твёрдой мозговой оболочки. Третий путь: отток к гипоталамусу от сети капилляров, расположенных в срединном возвышении. Венозный кровоток предназначен для переноса гормонов от гипофиза к органам-мишеням и клеткам-мишеням. Эти гормоны являются средством управления секрецией (положительная обратная связь). Следует иметь в виду, что гемациркуляция в гипофизе не является полностью изолированной от системного гемациркуляторного русла. Небольшое число вен, участвующих в кровообращении гипофиза, непосредственно связано с венами системного гемациркуляторного русла.
МАКРОСТРУКТУРА АДЕНОГИПОФИЗА.
Переднюю долю гипофиза разделяют на три части: (а) передняя часть аденогипофиза, (б) промежуточная часть аденогипофиза, (в) туберальная часть аденогипофиза.
Схема. Гипофиз и окружающие его структуры. Кавернозный синус. Срединное фронтальное сечение мозга человека. Модификация: Gray H., (1821–1865), Drake R., Vogl W., Mitchell A., Eds. Gray's Anatomy for Students. Churchill Livingstone, 2007, 1150 p., см.: Анатомия человека: Литература. Иллюстрации.
|
|
|
Схема. Поперечное сечение структур в облсти турецкого седла черепа. Модификация: Melmed S., Polonsky K.S., Larsen P.R., Kronenberg H.M., Eds. Williams Textbook of Endocrinology, 12th ed., Saunders, 2011, 1816 p., см.: Физиология человека: Литература. Иллюстрации.
|
|
Примечание:
|
На верхней (мозговой) поверхности расположено углубление, которое называют турецким седлом. В центре турецкого седла имеется гипофизарная ямка. В ней размещается гипофиз. Латеральные стенки турецкого седла состоят из костной ткани или из ткани твёрдой мозговой оболочки и граничат с кавернозными синусами. Через отверстия в этих стенках проходят парные третий, четвёртый, шестой черепные нервы и внутренняя сонная артерия. Таким образом, при увеличении объёма содержимого области турецкого седла содержимое кавернозных синусов подвержено наибольшему влиянию давления. Крыша, образованная твёрдой мозговой оболочкой, демпфирует колебания давления цереброспинальной жидкости на гипофиз. Непосредственно выше диафрагмы турецкого седла и кпереди от ножки гипофиза расположен перекрест зрительных нервов (зрительный перекрест). Из-за такой топографии, зрительные тракты и соседние центральные структуры являются наиболее чувствительными к повышению давления при увеличении массы гипофиза. Такое давление может поднимать диафрагму турецкого седла, преодолевая её упругое сопротивление. |
|
Схема. Кровеносные сосуды гипоталамуса: срединного возвышения, воронки серого бугра; гипофиза и смежных структур. Модификация: Gray H., (1821–1865), Standring S., Ed. Gray's Anatomy: The Anatomical Basis of Clinical Practice. 39th ed., Churchill Livingstone, 2008, 1600 p., см.: Анатомия человека: Литература. Иллюстрации.
|
|
Примечание:
|
Наиболее вероятная структура гемациркуляторного русла гипоталамуса и гипофиза. Артерии гипофиза исходят от каждой внутренней сонной артерии по одиночной нижней гипофизарной артерии и по нескольким верхним гипофизарным артериям. Нижняя гипофизарная артерия разделяется на медиальную и латеральную ветви. В нейрогипофизе эти артериальные ветви образуют два типа гемакапиллярных сетей. В первом типе гемакапиллярных сетей приносящими и выносящими сосудами являются артериолы. Такой тип сетей называется артериально-артериальным микрогемациркуляторным руслом. Во втором типе гемакапиллярных сетей нейрогипофиза приносящим сосудом является артериола, а выносящим сосудом является венула. Такой тип сетей называется артериально-венозным микрогемациркуляторным руслом. По венулам артериально-венозного микрогемациркуляторного русла кровь оттекает по трём направлениям. Первое направление потока крови - в нижние гипофизарные вены, а далее в синусы твёрдой оболочки головного мозга. Второе направление потока крови - в длинные и короткие вены и венулы аденогипофиза. Венулы аденогипофиза дают начало его венозноно-венозному микрогемациркуляторному руслу. Выносящими сосудами этой гемакапиллярной сети являются нижние гипофизарные вены аденогипофиза. Третье направление потока венозной крови - от гемакапиллярной сети нижней части воронки (артериально-венозное гемациркуляторное русло). Приносящими сосудами этой сети являются верхние гипофизарные артерии. Кроме того, верхние гипофизарные артерии являются приносящими сосудами, проходящими по оси воронки серого бугра, образующими анастомозы с выносящими нижними гипофизарными артериями. Эти анастомозы образуют гемакапиллярную сеть (артериально-артериальное гемациркуляторное русло) воронки. Верхние гипофизарные артерии снабжают кровью срединное возвышение и образуют в верхней части воронки гемакапиллярную сеть (артериально-венозное гемациркуляторное русло). Артерии срединного возвышения и стока воронки завершаются характерной сетью капилляров, которая наиболее сложна в верхней части воронки. В срединном возвышении капилляры образуют наружное, «покровное» сплетение капилляров и внутреннее, «глубокое» сплетение капилляров. В гемакапилляры наружного сплетения кровь поступает от верхних гипофизарных артерий, а оттекает по длинным прямым венам. Прямые вены нисходят в переднюю долю гипофиза (аденогипофиз). Внутреннее гемакапиллярное сплетение образовано параллельными цепями наружного гемакапиллярного сплетения. От капилляров нижней части воронки, от её стока кровь оттекает по коротким прямым венам в переднюю долю гипофиза. Как длинные, так и короткие прямые вены впадают в венозные синусоиды, расположенные в тяжах, разделяющих островки секреторных клеток аденогипофиза. Аденогипофиз не снабжается непосредственно артериями. Поскольку как приносящие гемасосуды, так и выносящие гемасосуды аденогипофиза являются однотипными, в частности венами, гемациркуляторное русло аденогипофиза по определению является воротным (портальным) гемациркуляторным руслом, а кровообращение по этим сосудам - воротной (портальной) системой гемациркуляции. Воротная система гемациркуляции предназначена для транспорта либеринов и статинов гипоталамуса. Эти гормоны синтезируются и выводятся мелкими (парвоцеллюлярными) нейросекреторными клетками, сгруппироваными в гипоталамусе. Гипоталамические либерины и статины управляют секреторными циклами аденогипофиза. Промежуточная часть гипофиза не имеет чётко организованного кровоснабжения. Существует три возможных пути венозного кровотока в гипофизе. Первый путь: приток по длинным и коротким прямым (портальным, воротным) венам. Второй путь: отток по крупным нижним гипофизарным венам в венозные синусы твёрдой мозговой оболочки. Третий путь: отток к гипоталамусу от сети капилляров, расположенных в срединном возвышении. Венозный кровоток предназначен для переноса гормонов от гипофиза к органам-мишеням и клеткам-мишеням. Эти гормоны являются средством управления секрецией (положительная обратная связь). Следует иметь в виду, что гемациркуляция в гипофизе не является полностью изолированной от системного гемациркуляторного русла. Небольшое число вен, участвующих в кровообращении гипофиза, непосредственно связано с венами системного гемациркуляторного русла.
|
|
Схема. Гемациркуляторное русло гипоталамуса и гипофиза. Сагиттальное сечение мозга. Вид слева. Модификация: Melmed S., Polonsky K.S., Larsen P.R., Kronenberg H.M., Eds. Williams Textbook of Endocrinology, 12th ed., Saunders, 2011, 1816 p., см.: Физиология человека: Литература. Иллюстрации.
|
|
Примечание:
|
Гипофиз - это эндокринная железа, состоящая из трёх частей: передняя доля гипофиза (~70 ÷ 80 % всей массы гипофиза), задняя доля гипофиза и промежуточная (рудиментарная) доля гипофиза. Гипофиз расположен в гипофизарной ямке турецкого седла клиновидной кости черепа. Железа отделена от полости черепа отростком твёрдой оболочки головного мозга, образующим диафрагму седла. Через отверстие в этой диафрагме гипофиз посредством ножки соединен с вышележащими отделами головного мозга: с воронкой гипоталамуса, с медианным возвышением гипоталамуса промежуточного мозга. Поперечный размер гипофиза ~10 ÷ 17 мм, переднезадний - ~5 ÷ 15 ÷ мм, вертикальный ~5 ÷ 10 мм. Масса гипофиза (~400 ÷ 900 г). У мужчин среднее значение массы гипофиза составляет ~0,5 г, у женщин - ~0,6 г. Поперечное среднее значение диаметра гипофиза составляет ~13 мм. Вертикальный размер - ~6 ÷ 9 мм. Переднезадний размер - ~9 мм. Эти размеры могут изменяться у женщин во время менструального цикла и различаться у неоднократно рожавших женщин. Во время беременности эти размеры могут увеличиваться во всех направлениях. Соответственно увеличивается масса гипофиза до ~1 г. Снаружи гипофиз покрыт капсулой. Передняя доля гипофиза, или аденогипофиз более плотная, чем задняя доля, нейрогипофиз. В передней доле выделяют три части. Дистальная (передняя) часть аденогипофиза занимает переднюю область гипофизарной ямки турецкого седла черепа. Промежуточная часть аденогипофиза расположена на границе с задней долей гипофиза. Бугорная (туберальная) часть аденогипофиза расположена выше и соединяется с воронкой и медианным возвышением гипоталамуса. В связи с особенностями кровоснабжения частей гипофиза, передняя доля имеет бледно-желтый цвет, с красноватым оттенком. Паренхима передней доли гипофиза представлена несколькими типами железистых клеток, расположенных скоплениями (трабекулами или фолликулами) разделёнными перегородками из рыхлой соединительной ткани. В толще перегородок располагаются синусоидальные кровеносные капилляры. Задняя доля гипофиза (неирогипофиз) состоит из нейрональной части и воронки. Нейрональная часть находится в задней области гипофизарной ямки, располагающейся позади бугорной части аденогипофиза. Нейрогипофиз содержит нейроглиальные клетки (питуициты), нервные волокна, идущие в нейрогипофиз от нейросекреторных ядер гипоталамуса, и нейросекреторные тельца. |
|
Схема. Развитие передней доли гипофиза = Model for development of the human anterior pituitary gland. Модификация: Melmed S., Polonsky K.S., Larsen P.R., Kronenberg H.M., Eds. Williams Textbook of Endocrinology, 12th ed., Saunders, 2011, 1816 p., см.: Физиология человека: Литература. Иллюстрации.
|
|
Примечание:
|
Figure 8-2 Model for development of the human anterior pituitary gland and cell lineage determination by a cascade of transcription factors. Trophic cells
are depicted with transcription factors known to determine cell-specific human or murine gene expression. ACTH , corticotropin; AV P, arginine vasopressin;
CRH, corticotropin-releasing hormone; ER, estrogen receptor; F, female; FSH, follicle-stimulating hormone; GH, growth hormone; GHRH, growth hormone–
releasing hormone; GHS, growth hormone secretagogue; GnRH, gonadotropin-releasing hormone; IGF, insulin-like growth factor; LH, luteinizing hormone; M,
male; POMC, pro-opiomelanocortin; PRL, prolactin; T3, triiodothyronine; T4, thyroxine; TRH, thyrotropin-releasing hormone; TSH, thyrotropin. (Adapted from
Shimon I, Melmed S. Anterior Pituitary Hormones. In: Conn P, Melmed S, eds. Scientific Basis of Endocrinology. Totowa, NJ: Humana Press, 1996; and Amselem S.
Perspectives on the molecular basis of developmental defects in the human pituitary region. In Rappaport R, Amselem S, eds. Hypothalamic-Pituitary Development.
Basel, Switzerland: Karger; 2001; and Dasen JS, O’Connell SM, Flynn SE, et al. Reciprocal interactions of Pit1 and GATA2 mediate signaling gradient–induced determination
of pituitary cell types. Cell. 1999;97:587-598.) с. 187 (178), 2_120 = Williams Textbook of Endocrinology_12ed_2011 |
|
Схема. Развитие передней доли гипофиза = Model for development of the human anterior pituitary gland. Модификация: Melmed S., Polonsky K.S., Larsen P.R., Kronenberg H.M., Eds. Williams Textbook of Endocrinology, 12th ed., Saunders, 2011, 1816 p., см.: Физиология человека: Литература. Иллюстрации.
|
|
Примечание:
|
Figure 8-2 Model for development of the human anterior pituitary gland and cell lineage determination by a cascade of transcription factors. Trophic cells
are depicted with transcription factors known to determine cell-specific human or murine gene expression. ACTH , corticotropin; AV P, arginine vasopressin;
CRH, corticotropin-releasing hormone; ER, estrogen receptor; F, female; FSH, follicle-stimulating hormone; GH, growth hormone; GHRH, growth hormone–
releasing hormone; GHS, growth hormone secretagogue; GnRH, gonadotropin-releasing hormone; IGF, insulin-like growth factor; LH, luteinizing hormone; M,
male; POMC, pro-opiomelanocortin; PRL, prolactin; T3, triiodothyronine; T4, thyroxine; TRH, thyrotropin-releasing hormone; TSH, thyrotropin. (Adapted from
Shimon I, Melmed S. Anterior Pituitary Hormones. In: Conn P, Melmed S, eds. Scientific Basis of Endocrinology. Totowa, NJ: Humana Press, 1996; and Amselem S.
Perspectives on the molecular basis of developmental defects in the human pituitary region. In Rappaport R, Amselem S, eds. Hypothalamic-Pituitary Development.
Basel, Switzerland: Karger; 2001; and Dasen JS, O’Connell SM, Flynn SE, et al. Reciprocal interactions of Pit1 and GATA2 mediate signaling gradient–induced determination
of pituitary cell types. Cell. 1999;97:587-598.) с. 187 (178), 2_120 = Williams Textbook of Endocrinology_12ed_2011 |
|
Таблица. Оценка функций аденогипофиза. c. 218. Модификация: Melmed S., Polonsky K.S., Larsen P.R., Kronenberg H.M., Eds. Williams Textbook of Endocrinology, 12th ed., Saunders, 2011, 1816 p., см.: Физиология человека: Литература. Иллюстрации.
|
№ |
Test* |
Dose |
Normal Response |
Side Effects |
Адренокортикотропный гормон (адренокортикотропин, кортикотропин); adrenocorticotropic hormone, ACTH |
1 |
Insulin tolerance |
0.1-0.15 U/kg IV |
Peak cortisol response >18 μg/dL, or ↑
≥ 5 μg/dL |
Sweating, palpitation, tremor |
2 |
Metyrapone |
30 mg/kg PO at 11 p.m. |
Peak 11-DOC ≥ 7 μg/dL
Peak cortisol ≤ 7 μg/dL
Peak ACTH >75 pg/mL |
Nausea, insomnia, adrenal crisis |
3 |
CRH stimulation |
100 μg IV |
Peak ACTH ≥ 2-4-fold
Peak cortisol ≥ 20 μg/dL or ↑ ≥ 7 μg/dL |
Flushing |
4 |
ACTH stimulation |
250 μg IV or IM, or 1 μg IV |
Peak cortisol ≥ 20 μg/dL |
Rare |
Тиролиберин; thyroid-stimulating hormone, TSH |
5 |
Serum T4 (free T4)
Total T3
TSH—third generation
TRH stimulation |
200-500 μg IV |
Peak TSH ≥ 2.5-fold, or ↑ ≥ 5-6 mU/L
(females) or ≥ 2-3 mU/L (males) |
Flushing, nausea, urge to micturate |
Пролактин; prolactin PRL |
6 |
Serum PRL
TRH stimulation |
200-500 μg IV |
PRL ↑ ≥ 2.5-fold |
Flushing, nausea, urge to micturate |
Лютеинизирующий гормон / фолликулстимулирующий гормон; LH, luteinizing hormone / FSH, follicle-stimulating hormone |
7 |
Serum LH and FSH
Serum testosterone
GnRH Stimulation |
100 μg IV |
Elevated in menopause and in men with
primary testicular failure (otherwise
normal) 300-900 ng/mL
LH ≥ 2-3-fold, or ↑ by 10 IU/L
FSH ≥ 1.5-2-fold, or ↑ ≥ 2 IU/L |
Rare |
Гормон роста; growth hormone, GH |
8 |
Insulin tolerance |
0.1-0.15 U/kg |
GH peak >5 мg/L |
Sweating, palpitation, tremor |
9 |
L-Arginine Arginine |
0.5 g/kg (maximum,
30 g) IV over 30-120 min |
GH peak >0.4 мg/L |
Nausea |
plus |
10 |
GHRH |
GHRH 1-5 мg/kg |
GH peak >4 мg/L |
Flushing |
Обозначения:
|
ACTH, adrenocorticotropic hormone;
CRH, corticotropin-releasing hormone;
11-DOC, 11-deoxycorticosterone;
FSH, follicle-stimulating hormone;
GH, growth hormone;
GHRH, growth hormone–releasing hormone;
GnRH, gonadotropin-releasing hormone; |
LH, luteinizing hormone;
PRL, prolactin;
T3, triiodothyronine;
T4, thyroxine;
TSH, thyroid-stimulating hormone;
TRH, thyrotropin-releasing hormone. |
|
Таблица. Лабораторные тесты для оценки функций гипоталамуса-гипофиза. Модификация: Gardner D.G., Shoback D.M., Eds. Greenspan's Basic & Clinical Endocrinology. 9th ed., Lange, 2011, 960 p., см.: Физиология человека: Литература. Иллюстрации.
|
№ |
Название теста |
Метод |
Материал выборки |
Возможные побочные эффекты. Противопоказания |
Интерпретация |
1 |
Rapid ACTH stimulation test (cosyntropin test)
|
Administer synthetic ACTH (1-24) (cosyntropin), 250 g intravenously or intramuscularly. The test may be performed at any time of the day or night and does not require fasting. The low-dose test is performed in the same manner except that 1 g of synthetic ACTH (1-24) is administered.
|
Obtain samples for plasma cortisol at 0 and 30 min or at 0 and 60 min.
|
Rare allergic reactions have been reported.
|
A normal response is a peak plasma cortisol level > 18-20 g/dL (496-552 nmol/L).
|
2 |
Insulin hypoglycemia test
|
Give nothing by mouth after midnight. Start an intravenous infusion with normal saline solution. Regular insulin is given intravenously in a dose sufficient to cause adequate hypoglycemia (blood glucose <40 mg/dL). The dose is 0.1-0.15 unit/kg (healthy subjects); 0.2-0.3 unit/kg (obese subjects or those with Cushing syndrome or acromegaly); 0.05 unit/kg (patients with suspected hypopituitarism).
|
Collect blood for glucose determinations every 15 min during the study. Samples of GH and cortisol are obtained at 0, 30, 45, 60, 75, and 90 min.
|
A physician must be in attendance. Symptomatic hypoglycemia (diaphoresis, headache, tachycardia, weakness) is necessary for adequate stimulation and occurs 20-35 min after insulin is administered in most patients. If severe central nervous system signs or symptoms occur, intravenous glucose (25-50 mL of 50% glucose) should be given immediately; otherwise, the test can be terminated with a meal or with oral glucose. This test is contraindicated in the elderly or in patients with cardiovascular or cerebrovascular disease and seizure disorders.
|
Symptomatic hypoglycemia and a fall in blood glucose to <40 mg/dL (2.2 mmol/L) will increase GH to a maximal level > 5 ng/mL; some investigators regard an increment of 6 ng/mL (280 pmol/L) as normal. Plasma cortisol should increase to a peak level of at least 18-20 g/dL (496-552 nmol/L).
|
3 |
Metyrapone test
|
Metyrapone is given orally between 11 and 12 pm with a snack to minimize gastrointestinal discomfort. The dose is 30 mg/kg.
|
Blood for plasma 11-deoxycortisol and cortisol determinations is obtained at 8 am the morning after metyrapone is given.
|
Gastrointestinal upset may occur. Adrenal insufficiency may occur. Metyrapone should not be used in sick patients or those in whom primary adrenal insufficiency is suspected.
|
Serum 11-deoxycortisol should increase to > 7 g/dL (0.19 mol/L). Cortisol should be <10 g/dL (0.28 mol/L) in order to ensure adequate inhibition of 11-hydroxylation.
|
4 |
GHRH-arginine infusion test
|
The patient should be fasting after midnight. Give GHRH, 1 g/kg intravenously over 1 min followed by arginine hydrochloride, 0.5 g/kg intravenously, up to a maximum of 30 g over 30 min.
|
Blood for plasma GH determinations is collected at 0, 30, 60, 90, and 120 min.
|
Mild flushing, a metallic taste, or nausea and vomiting may occur. This test is contraindicated in patients with severe liver disease, renal disease, or acidosis.
|
The lower limit of normal for the peak GH response is 6 ng/mL (280 pmol/L) although most normals reach levels of > 10-15 ng/mL (460-700 pmol/L).
|
5 |
Glucagon stimulation test
|
The patient should be fasting after midnight. Give glucagon 1 mg intramuscularly.
|
Blood for plasma GH and capillary blood glucose at 0, 30, 60, 90, 120, 150, and 180 min.
|
Nausea and late hypoglycemia. This test is contraindicated in malnourished patients or patients who have not eaten for > 48 h.
|
GH rises to > 3 g/L in normal individuals. Glucose usually rises to peak around 90 min, then gradually declines.
|
6 |
Glucose growth hormone suppression test
|
The patient should be fasting after midnight; give glucose, 75-100 g orally.
|
GH and glucose should be determined at 0, 30, and 60 min after glucose administration.
|
Patients may complain of nausea after the large glucose load.
|
GH levels are suppressed to <2 ng/mL (90 pmol/L) in healthy subjects. Failure of adequate suppression or a paradoxic rise may be seen in acromegaly, starvation, protein-calorie malnutrition, and anorexia nervosa.
|
7 |
TRH test
|
Fasting is not required, but since nausea may occur, it is preferred. Give protirelin, 500 g intravenously over 15-30 s. The patient should be kept supine, since slight hypertension or hypotension may occur. Protirelin is supplied in vials of 500 g, although 400 g will evoke normal responses.
|
Blood for determination of plasma TSH and PRL is obtained at 0, 30, and 60 min. An abbreviated test utilizes samples taken at 0 and 30 min only. A maximum TSH response takes 45 min or less.
|
No serious complications have been reported. Most patients complain of a sensation of urinary urgency and a metallic taste in the mouth; other symptoms include flushing, palpitations, and nausea. These symptoms occur within 1-2 min of the injection and last 5 min at most.
|
Normal TSH response: 6 U/mL (6 mU/L) in women and men aged <49 2 U/mL( 2 mU/L) in men aged 40-79 Normal PRL response varies with gender and age.
|
8 |
GnRH test
|
The patient should be at rest but need not be fasting. Give GnRH (gonadorelin), 100 g intravenously, over 15 s.
|
Blood samples for LH and FSH determinations are taken at 0, 30, and 60 min. Since the FSH response is somewhat delayed, a 90-min specimen may be necessary.
|
Side effects are rare, and no contraindications have been reported.
|
This response is dependent on sex and the time of the menstrual cycle. Table 4–9 illustrates the mean maximal change in LH and FSH after GnRH administration. An increase of LH of 1.3-2.6 g/L (12-23 IU/L) is considered to be normal; FSH usually responds more slowly and less markedly. FSH may not increase even in healthy subjects.
|
9 |
Clomiphene test
|
Clomiphene is administered orally. For women, give 100 mg daily for 5 d (beginning on day 5 of the cycle if the patient is menstruating); for men, give 100 mg daily for 7-10 d.
|
Blood for LH and FSH determinations is drawn before and after clomiphene is given.
|
This drug may stimulate ovulation, and women should be advised accordingly.
|
In women, LH and FSH levels peak on the fifth day to a level above the normal range. After the fifth day, LH and FSH levels decline. In men, LH should double after 1 wk; FSH will also increase, but to a lesser extent.
|
10 |
CRH test
|
CRH (1 g/kg) is given intravenously as a bolus injection.
|
Blood samples for ACTH and cortisol are taken at 0, 15, 30, and 60 min.
|
Flushing often occurs. Transient tachycardia and hypotension have also been reported.
|
The ACTH response is dependent on the assay utilized and occurs 15 min after CRH is administered. The peak cortisol response occurs at 30-60 min and is usually > 10 g/dL (276 nmol/L).
|
11 |
Low-dose dexamethasone suppression test
|
Dexamethasone (1 mg) is given between 11 pm and midnight.
|
Blood samples for cortisol and dexamethasone are taken at 8 am the next morning.
|
Side effects are rare. Compliance is sometimes an issue. Some medications and patient variability can affect dexamethasone metabolism.
|
Cortisol should suppress to <1.8 g/dL in normal individuals. This cutoff has a high sensitivity, but specificity is compromised.
|
Примечание:
|
Endocrinologic Evaluation of the Hypothalamic-Pituitary Axis
The precise assessment of the hypothalamic-pituitary axis has been made possible by radioimmunoassays of the major anterior pituitary hormones and their specific target gland hormones. In addition, provocative testing using synthetic or purified hormones (eg, ACTH, ovine CRH, glucagon, insulin) can be used to assess hypothalamic-pituitary reserve and excess.
This section describes the principles involved in testing each pituitary hormone as well as special situations (eg, drugs, obesity) that may interfere with pituitary function or pituitary testing. Specific protocols for performing and interpreting diagnostic procedures are outlined at the end of this section and in Table 4–9. The clinical manifestations of either hypo- or hypersecretion of anterior pituitary hormones are discussed in subsequent sections. |
Литература. Иллюстрации. References. Illustrations
Щелкни здесь и получи доступ в библиотеку сайта! Click here and receive access to the reference library!
- National Library of Medicine. Medical Subject Headings. 2014.
База данных. Доступ к данному источнику = Access to the reference. URL: http://www.nlm.nih.gov/cgi/mesh/2014/MB_cgi quotation
- UniProtKB/Swiss-Prot Белки. База данных. Биохимия. Генетика. Ссылки других биохимических баз данных.
Доступ к данному источнику = Access to the reference. URL: http://www.expasy.ch/sprot/ quotation
ЭНДОКРИНОЛОГИЯ: ОГЛАВЛЕНИЕ
ЭНДОКРИНОЛОГИЯ: ИЛЛЮСТРАЦИИ.
ЭНДОКРИНОЛОГИЯ: ТАБЛИЦЫ.
ЭНДОКРИНОЛОГИЯ: ЛИТЕРАТУРА.
«Я У Ч Е Н Ы Й И Л И . . . Н Е Д О У Ч К А ?» Т Е С Т В А Ш Е Г О И Н Т Е Л Л Е К Т А
Предпосылка: Эффективность развития любой отрасли знаний определяется степенью соответствия методологии познания - познаваемой сущности. Реальность: Живые структуры от биохимического и субклеточного уровня, до целого организма являются вероятностными структурами. Функции вероятностных структур являются вероятностными функциями. Необходимое условие: Эффективное исследование вероятностных структур и функций должно основываться на вероятностной методологии (Трифонов Е.В., 1978,..., ..., 2015, …).
Критерий: Степень развития морфологии, физиологии, психологии человека и медицины, объём индивидуальных и социальных знаний в этих областях определяется степенью использования вероятностной методологии.
Актуальные знания: В соответствии с предпосылкой, реальностью, необходимым условием и критерием...
... о ц е н и т е с а м о с т о я т е л ь н о: — с т е п е н ь р а з в и т и я с о в р е м е н н о й н а у к и, — о б ъ е м В а ш и х з н а н и й и — В а ш и н т е л л е к т !
|
♥ Ошибка? Щелкни здесь и исправь ее! Поиск на сайте E-mail автора (author): tryphonov@yandex.ru
|